模擬人類(lèi)視網(wǎng)膜 人臉識別技術(shù)研究的重大進(jìn)步
卡內基梅隆大學(xué)剛剛發(fā)布了其關(guān)于人臉識別的最新研究,由其改進(jìn)的算法能夠從圖片中提取并編碼關(guān)鍵信息,也就是說(shuō)能從人海中迅速提取面部信息。目前是人臉識別最熱門(mén)的創(chuàng )業(yè)方向之一,卡內基梅隆大學(xué)的這項技術(shù)研究對于產(chǎn)業(yè)界的應用將起到很大的推動(dòng)作用。

無(wú)論是在茫茫人海中提取面部信息,還是在大圖中識別出遠處/細小的物體,都對計算機視覺(jué)圖形提出了非常大的挑戰。憑借著(zhù)多年的技術(shù)積淀,來(lái)自卡內基梅隆大學(xué)的科研團隊終于找到了其中的訣竅——成功識別細小對象的關(guān)鍵就是尋找與之匹配的更大物體。
這種能夠從圖片中提取并編碼關(guān)鍵信息的改進(jìn)算法,是由副教授 Deva Ramanan 和博士生 Peiyun Hu 共同推進(jìn)的,可謂是識別微型人臉里程上的重大進(jìn)步?! ≡诿娌康幕鶞蕼y試集中,此前的方法只能識別出 29% 到 64% 之間的正確人類(lèi)面孔,而她們所提出的改進(jìn)版算法減少了兩個(gè)導致誤差的隱私,從而將正確率提高到了 81%?! amanan 說(shuō)道:「這就像是尋找在某個(gè)人手中的一根牙簽。當你提示對象可能會(huì )使用牙簽的時(shí)候你就會(huì )非常容易看到它。手指的方位,手部的動(dòng)作和位置都為我們最終找到這根牙簽提供了非常重要的線(xiàn)索?!埂 ⊥瑯?,為了尋找那些只有極少像素點(diǎn)的的面部,更大照片中的身體或者人群照片都能提供諸多線(xiàn)索?! τ谖⑿兔娌康奶崛碛袕V闊的應用前景,例如統計人群數量等等。而延伸至微型物體的需求日益突顯,就拿自動(dòng)駕駛汽車(chē)來(lái)說(shuō)當車(chē)速越來(lái)越快,必然需要時(shí)刻監視和評估交通狀況,必然需要對遠處的物體進(jìn)行充分且正確的識別,才能做出正確的反應?! amanan 表示通過(guò)輔助關(guān)聯(lián)信息來(lái)幫助識別對象并不是什么新鮮的概念。然而,在實(shí)際系統中很難去闡述和表達這種直覺(jué)。這是因為對關(guān)聯(lián)信息的編碼通常涉及到「高緯度描述」(High-Dimensional Descriptors),其中包含大量信息但是使用起來(lái)卻是非常的麻煩。他和 Hu 所研發(fā)的方法是使用了「中央凹描述」(Foveal Descriptors),模擬人類(lèi)視覺(jué)結構對關(guān)聯(lián)信息進(jìn)行編碼。中央凹是視網(wǎng)膜中視覺(jué)(辨色力、分辨力)最敏銳的區域,這種方法為圖片的小塊區域提供了清晰的細節,而周?chē)鷧^域則比較的模糊。

相關(guān)標簽
新聞分享